
12 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

When it comes to programming languages, Arthur
Whitney is a man of few words. The languages
he has designed, such as A, K, and Q, are known

for their terse, often cryptic syntax and tendency to use
single ASCII characters instead of reserved words. While
these languages may mystify those used to wordier lan-
guages such as Java, their speed and efficiency has made
them popular with engineers on Wall Street.

Whitney began his Wall Street career in the 1980s,
building trading systems at Morgan Stanley using his

own version of APL (the language on which all of his
later languages are based). Eventually he started his own
company, Kx Systems, which today provides realtime
and historical data-analysis software to many Wall Street
investment banks. The company’s signature product,
KDB+, is a column-oriented database based on the K
language.

Eager to learn what’s behind Whitney’s unique lan-
guages (and curious to see if his reputation for concision
carries over into real life), we invited him to speak with

A Conversation with Arthur Whitney
interview

A few well-chosen words about programming languages from a long-time designer

Photography by Tom Upton

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1515964.1531242&domain=pdf&date_stamp=2009-02-01

ACM QUEUE February/March 2009 13 more queue: queue.acm.org

3132851 35648 (7/07) © Seabury & Smith, Inc. 2007

The plans are subject to the terms, conditions, exclusions and limitations of the group policy. For costs and complete details of coverage,
contact the plan administrator. Coverage may vary and may not be available in all states.

*Underwritten by The United States Life Insurance Company in the City of New York, a member company of American International Group, Inc.

**Underwritten by American General Assurance Company, a member company of American International Group, Inc.

***Coverage is available through Assurant Health and underwritten by Time Insurance Company.

AG5217

Group Term Life Insurance**

10- or 20-Year Group Term
Life Insurance*

Group Disability Income Insurance*

Group Accidental Death &
Dismemberment Insurance*

Group Catastrophic Major
Medical Insurance*

Group Dental Plan*

Long-Term Care Plan

Major Medical Insurance

Short-Term Medical Plan***

Who has time to think
about insurance?

35648 ACM All Plans ad 7/07
4-color
Trim size: 8 1/8 x 10 7/8

Today, it’s likely you’re busier than ever. So, the last thing you probably have on your mind is

whether or not you are properly insured.

But in about the same time it takes to enjoy a cup of coffee, you can learn more about your

ACM-sponsored group insurance program — a special member benefit that can help provide

you financial security at economical group rates.

Take just a few minutes today to make sure you’re properly insured.

Call Marsh Affinity Group Services at 1-800-503-9230 or visit www.personal-plans.com/acm.

14 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

Queue editorial board member Bryan Cantrill. Cantrill is
best known for developing DTrace, a tool for dynamic
instrumentation of production systems that helps com-
panies identify and fix performance bottlenecks. Whitney
was gracious enough to invite Cantrill to his home in
Palo Alto, where they spoke about his career, his lan-
guages, and the essence of elegance.

BRYAN CANTRILL You are a bit of a rarity in software
engineering in that you have been writing software on a
daily basis for decades. Your first introduction to comput-
ing was APL with the master, Ken Iverson. What was that
like?
ARTHUR WHITNEY In 1969, I was 11, and Ken Iverson
was at IBM Research in Yorktown. He had been a friend of
my dad’s at Harvard in the ’40s. We lived in Alberta, but
we were driving around the continent and went to visit
him. He showed me programming on a terminal in his
house in Mount Kisco. This was in the ’60s, and already
it was interactive, and it was very quick to write programs
and get results.
BC You must have been the only 11-year-old on the
planet getting that kind of demonstration of program-
ming in 1969.
AW Of course, I had no idea about that, and I didn’t
really pay much attention. He showed me some stuff, and
I thought it was cool. In ’74 when I went to a university
and took a computer class, they were using punch cards,
which made no sense because five years earlier I had
already seen interactive programming.
BC Did you start working on APL at Waterloo?
AW No, at Waterloo I just did some APL for a week. I
was a math major and I wasn’t interested in computers
because I just wanted to do pure math. So I really missed
a big opportunity.
BC Well, I’m not sure if you missed it or if you just found
the opportunity a different way.
AW It took me a long time. For the next 10 years I did
a little bit of APL in the summers as a consultant, but it
wasn’t until about 1980 when I was working with Ken at
a Canadian company called I.P. Sharp that I really began
using it regularly. Ken had retired from IBM after 20 years
and was working at I.P. Sharp in Toronto.

I.P. Sharp was an amazing company. It had its own
worldwide network that had nothing to do with DARPA
(Defense Advanced Research Projects Agency). We were
sending e-mails and instant messages to Australia and
Singapore. The whole company was APL.
BC They were selling APL time sharing, right?

AW Yes, and it was easy because the one computer in
Toronto was running the entire world.
BC What kinds of problems were people using the APL
time-sharing service for?
AW It was mostly general-purpose business computing,
such as accounting systems. I did a 2-billion-row data-
base, so we were doing very big databases and data analy-
sis—what today, 20 years later, they call OLAP (online
analytical processing).

I left I.P. Sharp sometime around 1980. Then I went
to graduate school at the University of Toronto where
I did pure mathematics, but mostly I was just goofing
around. All through the ’80s I was implementing my own
languages: object-oriented languages, a lot of different
LISPs, Prolog. In 1985 I got a job at Stanford, where I
implemented a Prolog inference-engine kind of language.
Then I was with an artificial intelligence company called
Teknowledge.
BC Were you developing these languages because you
needed a certain expressive power in the language to
solve a particular problem at hand? What were the moti-
vations for these languages?
AW My motivation was always to create a general-pur-
pose programming language that would solve all prob-
lems and be interpreted, but fast.

At Stanford the language was determined by the pro-
fessor, and he wanted to have an inference engine, so the
motivation there was artificial intelligence, but I wasn’t
much interested in that.

My big break was in 1988 when I joined Morgan
Stanley. There the motivation was a terabyte of TIC
(Treasury International Capital) data, and back then there
were a few million transactions a day being processed by
realtime trading systems. I think we had one of the big-
gest trading operations in the world. We had a portfolio
that was a billion dollars: half a billion long, half a billion
short. We were trading every second electronically. The
data set was a terabyte, but we compressed it down. It was
pairs trading, and I wrote an APL to do all of that—the
big database and the realtime trading—so our entire
department was using my language.
BC You had used APL, and then you explored these other
languages—Prolog variants and so on—but when you got
to Morgan Stanley you came back to APL. What brought
you back?
AW I much preferred implementing and coding in LISP,
but once I was dealing with big data sets and then having
to do fairly simple calculations, APL just seemed to have
the better vocabulary.

interview

ACM QUEUE February/March 2009 15 more queue: queue.acm.org

It had to come up one
level. Common LISP even
then had about 2,000
primitives. I didn’t like
that. What I liked was the
original LISP, which had
car, cdr, cons, and cond,
but that was too little.
Common LISP was way
too big, but a stripped-
down version of APL was
in the middle with about
50 operations. It’s about
the same size as C. But the
thing about the languages
that I implement is that
there are no libraries: those
50 operations are it. Every-
body builds from there,
and the resulting programs
are extremely short.
BC There the problem did
serve as a motivator. You
had this massive amount
of data, and you needed a
language that could deal
with that large amount of
data in a first-class fashion.
Did other people around
you see the expressive
power, because even at
that time I would assume
that APL was beginning to
wane a bit?
AW APL peaked in the
’70s, but in the finance
industry APL was very
strong, so there was no
difficulty in doing my own
APL version.
BC How did your own APL
differ from the original?
Did you change the primitives that were being exported?
AW The primitives were a little different; the grammar
was pretty much the same. The syntax was the same.
The vocabulary was very similar, but not enough to be
anything close to portable.
BC I’m sure that practitioners who know APL only by
reputation are going to wonder if it used the same wonky
characters as the original APL.

AW Yes, at Morgan Stanley I did use the APL characters,
but on my next iteration, K, which was in ’92, I gave up
on those characters.
BC Why did you give up on them? And how did you feel
about giving up on the characters?
AW Well, it felt great because it was easier to send e-
mails. They’re beautiful characters, but I had to strip the
language down. K today has no reserved words; it just

16 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

uses the ASCII keyboard. It’s completely arbitrary, but it
makes me keep the language small.
BC You speak about the arbitrariness in using the ASCII
keyboard. I heard one feature being described as this:
“When Arthur ran out of punctuation, he used a leading
underscore to denote system primitives.” When I read
that I thought to myself, “That’s a little ridiculous,” but
then I thought of all the goofy punctuation characters we
have in other languages: C uses nearly all of them; many
languages use the balance. And we use them in different
contexts and different ways.
AW Certainly it’s unfamiliar, and people say, “Oh, it looks
like line noise.” But even kids can learn this quickly.
BC Obviously, a point of pride for K is the ability to
phrase things concisely. Is there any length that is too
short, where you’ve actually squeezed too much informa-
tion out in terms of its readability?
AW Yes, and I expect I cross that boundary a lot. But if
every line has up to seven operations, then I think that’s
manageable. In fact, we can remember seven things.
BC Right. People are able to retain a seven-digit phone
number, but it drops off quickly at eight, nine, ten digits.
AW If you’re Cantonese, then it’s ten. I have a very good
friend, Roger Hui, who implements J. He was born in
Hong Kong but grew up in Edmonton as I did. One day I
asked him, “Roger, do you do math in English or Can-
tonese?” He smiled at me and said, “I do it in Cantonese
because it’s faster and it’s completely regular.”
BC This raises an interesting question. When I heard
about your early exposure to APL, a part of me won-
dered if this was like growing up with tonal languages. I
think for most people who do not grow up with a tonal
language, the brain simply cannot hear or express some
of the tone differences because we use tone differently in
nontonal languages. Do you think that your exposure to
this kind of programming at such a young age actually
influenced your thinking at a more nascent level?
AW I think so, and I think that if kids got it even
younger, they would have a bigger advantage. I’ve
noticed over the years that I miss things because I didn’t
start young enough.
BC To ask a slightly broader question, what is the con-
nection between computer language and thought? To
what degree does our choice of how we express software
change the way we think about the problem?
AW I think it does a lot. That was the point of Ken
Iverson’s Turing Award paper, “Notation as a Tool of
Thought.” I did pure mathematics in school, but later I
was a teaching assistant for a graduate course in computer
algorithms. I could see that the professor was getting

killed by the notation. He was trying to express the idea
of different kinds of matrix inner products, saying if you
have a directed graph and you’re looking at connections,
then you write this triple nested loop in Fortran or Algol.
It took him an hour to express it. What he really wanted
to show was that for a connected graph it was an or-dot-
and. If it’s a graph of pipe capacities, then maybe it’s a
plus-dot-min. If he’d had APL or K as a notation, he could
have covered that in a few seconds or maybe a minute,
but because of the notation he couldn’t do it.

Another thing I saw that really killed me was in a class
on provability, again, a graduate course where I was grad-
ing the students’ work. In the ’70s there was a lot of work
on trying to prove programs correct. In this course the
students had to do binary search and prove with these
provability techniques that they were actually doing
binary search. They handed in these long papers that
were just so well argued, but the programs didn’t work.
I don’t think a single one handled the edge conditions

correctly. I could read the code and see the mistake, but I
couldn’t read the proofs.

Ken believed that notation should be as high level as
possible because, for example, if matrix product is plus-
dot-times, there’s no question about that being correct.
BC By raising the level of abstraction, you make it easier
for things to be correct by inspection.
AW Yes. I have about 1,000 customers around the world
in different banks and hedge funds on the equity side
(where everything’s going fine). I think the ratio of com-
ment to code for them is actually much greater than one.
I never comment anything because I’m always trying to
make it so the code itself is the comment.
BC Do you ever look at your own code and think, “What
the hell was I doing here?”
AW No, I guess I don’t.
BC Wow! I confess that I tend to write comments for my
future self. I know that when I come back to code I’ve

interview

“If you can find a shorter,
 more elegant program that

 isn’t much slower than my code,
 I want to hear about it.”

 —Arthur Whitney

ACM QUEUE February/March 2009 17 more queue: queue.acm.org

written, I often don’t recall instantly what the problem at
hand was or how I solved it. Now you’ve got me thinking
that maybe I’m just in the wrong language. When you’re
at this higher level of abstraction, maybe it’s easier to see
your intent.

In terms of debugging your code, obviously the power
of a terse language such as K or Q is that, presumably,
it’s easier to find bugs by inspection. How do you debug
them?
AW In C I never learned to use the debugger so I used
to never make mistakes, but now I make mistakes and I
just put in a print statement. K is interpreted, so it’s a lot
easier. If I’m surprised at the value of some local at some
point, I can put in a print, and that’s really all I do.
BC That works well when you have deterministic inputs.
What if the nature of the problem is just less reproduc-
ible—for example, if you were in an event-driven system
where you had a confluence of events that led to a
problem?
AW It has been 20 years now that I’ve had Wall Street
customers—they’re doing 2 billion transactions a day and
they have trillion-row databases—and in those 20 years,
there was one time where we couldn’t reproduce the bug.
That was nasty. I knew the kinds of operations that they
were doing and I finally found it by just reading my code.
BC Was this a bug in K or Q, or was it in the C base
implementation?
AW It was a bug in C, in my implementation.
BC Is the nature of the problems that K and Q solve such
that you just don’t have nonreproducible problems?
AW It seems ridiculous, but it’s only recently that we’ve
been doing multithreading, so I guess we might start to
see things that are much harder to reproduce. Of course
it has been event-driven since 1988. I don’t know why it
is, but it has always been the case that people can quickly
find a tiny script that will show the problem.
BC I think it’s fair to say that you’ve written a lot of flaw-
less code.
AW Yes. I went millions and millions of hours with no
problems—probably tens of millions of hours with no
problems.
BC That’s a relief to hear because it seems that soci-
etally we have come to accept bugs as being endemic in
software. When you’re talking about the program being
its own proof, I think it gets to the fact that really these
programs are much more like proofs. A proof is either cor-
rect, or it’s flawed: there’s no middle ground for a proof.
AW I want to see if I can get better. Kx is doing fantastic,
and it takes just a few hours a month for me, so now I
have a clean slate. Every few years I have to do a new

language, but the customers don’t really like that.
BC Q was the last iteration of that process. What are some
of the differences between Q and K?
AW K was all symbolic. It was 20 symbols with a prefix
and an infix meaning. With Q, the idea was to have all
the monadic cases be words. So now infix are the symbols
and prefix are the words.
BC This gives it what you call the wordiness—I think what
others might call readability. For those who are not in
that world, will a Q program look more readable than a K
program?
AW Absolutely, because a lot of these symbols are familiar
to people from other languages—plus, minus, times,
greater than, less than. If they’re looking at a K program
that’s using all 20 of them, they will know a half or a
third of them, whereas if they’re looking at a Q program
they will know about two-thirds of them.
BC How important is the readability to the uninitiated?
AW From a sales point of view, I think it has helped a lot.
For someone who programs a few hours a week, I don’t
think it would make any difference once they learned K
or Q.
BC There are other changes, as well. For example, Q
seems to be much more closely tied to the data.
AW Right. It’s a little confusing because every three or
four years I do an entirely new implementation of K.
There was a 1993 K and then there was a year 2000 K.
It’s the 2000 K that’s underneath Q, so that implementa-
tion of K and Q are exactly the same, except that Q has
a library of 50 additional operations, which are table-
related, written in K.
BC If you were to write a program, would you be using
the primitives that Q offers or would you write it in K?
AW Most programming I do would be in K, but if it was a
lot of relational-table stuff, I would use Q because a lot of
those words are already defined.
BC When you’re actually in the practice of writing code,
do you try many drafts?
AW I’ve found the best thing is just to get something run-
ning, and then I’ll redo it probably 10 or 20 times until I
can’t get it any smaller.
BC Do you redo it for aesthetics?
AW Yes. What I tell my community is if you can find a
shorter, more elegant program that isn’t much slower
than my code, I want to hear about it. And if it’s shorter
and faster, I absolutely want to hear about it.
BC Although I don’t know that I’ve got the same dis-
cipline, I share your sense of aesthetics about beautiful
code. I don’t see that sense of aesthetics being very wide-
spread in software. Shouldn’t it be, though?

18 February/March 2009 ACM QUEUE rants: feedback@queue.acm.org

AW I think so. The thing about beautiful code is, first of
all, it’s beautiful. Second, it’s a lot easier to maintain.
BC I think elegant is something that we all know when we
see it, but how would you describe elegant code?
AW It’s just really clear. I don’t know what it is. In our
community we have a listbox where people post ques-
tions and answers about coding, and the elegant code is
always the shortest code.
BC Is it elegant because it’s the shortest, or is being short
a side effect of being elegant?
AW I guess it’s both. All things being equal, less code is
always better.
BC I was just thinking of the analog to a proof. The
shorter proof is almost always the more elegant proof.
AW It’s the same thing. It’s usually easier to understand.
BC Software has often been compared with civil engineer-
ing, but I’m really sick of people describing software as
being like a bridge. What do you think the analog for
software is?
AW Poetry.
BC Poetry captures the aesthetics, but not the precision.
AW I don’t know, maybe it does.

BC Let’s talk about the data sets a little, because you’re
dealing with enormous amounts of data, and it’s column-
oriented.
AW The typical data is trades, quotes, and orders. These
days, there are about a billion quotes a day just in the
United States equities. The order events are probably 2
or 3 billion a day, and there are about 50 million trades.
The customers tend to keep track of all that and execute
trades during the day as well, but they also keep all the
history so they can try different strategies.

I’ve done column-oriented databases since 1974. In
the ’50s they were doing column-oriented databases on
file systems. It’s the same data type, so of course you
would store it by column.
BC Obviously that’s the right choice when you’re deal-
ing with that kind of a data hose. If you were to build a
transactional system on K, would you still want it to be
column-oriented?
AW Yes, column-oriented databases seem fine. I think the
reason they’re fine is because we always set it up so that
the hot stuff is in memory. We did that in the ’70s when
our memory was 32 K and we did high transaction rates.
Now the guys have 128 gig, which is enough for a billion
because these records are only 20 or 30 bytes.
BC So they load the whole thing into memory and then
operate on it?

AW All day long all the hot stuff is in memory, and then
during the day it takes about two minutes to write the
whole thing down to disk and then flip to a new day and
start from scratch.
BC In that case, is the data coming from a feed or from
disk?
AW Multiple feeds, so the realtime systems and the his-
torical systems are all running 24/7. It’s just that there’s
always a quiet time.
BC But the transactions in that system are really append-
ing temporal data to the end of a very large table.
AW Yes, but with all the analytics, they could be doing
all kinds of updates to smaller tables. That’s very typical.
In fact, we encourage them to do that because all your
realtime analytics need to be look-ups. You can’t do any
aggregations in realtime, so you have a lot of raw data.
You have these billion rows of raw data spread among
three tables, maybe. You might have 10 or 20 smaller
tables that represent a certain state, such as book. There
are also certain calculations that you want to maintain so
that you can do either constant-time look-up or binary-
search look-up.
BC You were saying that keeping data in DRAM is incred-
ibly important for your performance. Looking down
the track, what do you see in terms of the technologies
that are coming? In particular, I’ve got to ask you about
Flash and whether you think Flash memory is interest-
ing in terms of its ability to get not DRAM speeds, but
much-better-than-disk speeds. Does that pose any sort of
change?
AW I think the customers are starting to investigate. It
sounds great. It should provide more opportunities for
other kinds of mid-range stuff.

Obviously, right now there’s no random access to disk,
except for the research people. The average customer’s
database is 30 terabytes, a trillion rows. So when they
want to say, “Give me all the IBM activity for a certain
day,” we teach them, by all means, since it’s column-
oriented take as few columns as you need for whatever
it is you need to do. You might need four columns:
time, price, size, and something else. You’ve got to do
four seeks, because we’ve got all these indexes set up so
that’s all in memory. If you want all the IBM activity for
a certain day, that’s going to be four seeks and then—
boom!—you’ll read a few megabytes out of each of those
columns. Of course, if you go back to IBM on that day, it
will probably be sitting in your file cache.
BC That’s assuming, too, that when I’m accessing a file
sequentially, it corresponds to sequential accesses on
disk, which is not necessarily the case for copy-on-write

interview

ACM QUEUE February/March 2009 19 more queue: queue.acm.org

file systems. For file systems such as ZFS and WAFL (write
anywhere file layout), if that data were not written in a
temporally sequential manner, it would not necessarily be
sequential on disk. Do you find that you run into those
kinds of problems, or does the data tend to be written
temporally sequentially as well?
AW It’s always written temporally sequentially.
BC So that doesn’t become an issue?
AW I don’t think so. I probably would have heard about
it.
BC Yes, that’s probably a safe bet because the performance
would be terrible.
AW But it’s funny—I think all databases are like this.
We’re basically keeping every transaction, so that’s all
sequential. What happens at the end of the day, because
of the way people query it, is that we actually sort the
entire day by instrument and then write it out sequen-
tially to disk. That operation happens in memory, and
then it goes to disk, so it’s actually sorted by security and
then time. During the day, however, it’s sorted by time.
BC That’s a large sort. How long does it take?
AW You could be sorting a billion rows. That takes a
couple of minutes.
BC The single CPU pipes are approaching their limits.
In terms of that sort taking a couple of minutes, that’s
100 percent compute time. Do you use single or multiple
cores when you do it?
AW Single core. The data volumes are getting much big-
ger, and, of course, the core speed is not improving, so
our customers have to split the symbol groups.
BC Then you’ve got to segment your data flow somehow
to reflect the fact that single-core performance is not
improving.
AW Yes, and we’re right at that limit now, because with a
single core we can do about a million updates a second.
BC What about making K or Q implicitly parallel, where
you’re parallelizing under the hood? Is that a possibility?
AW Maybe. I’ve done parallel programming since ’75,
and K is a parallel language. How ironic—this must be
the most parallel language there is. The most prominent
operator is each, which is parallel. There are no control
structures. The primitives themselves are parallel.
BC Is that something you’re thinking about doing? Will
that parallel each actually consume multiple cores?
AW Yes, but that doesn’t solve the sorting problem, and
it really doesn’t solve the realtime problem, because in
realtime if I get an IBM quote, it’s one record. I might
want to check it against everything else. Certainly, if I’ve
got one-eighth of the symbols operating entirely on their
own, then that’s very easy to parallelize; but if your strat-

egy involves all of the symbols all the time, that would be
very difficult to run in parallel.
BC What’s the solution?
AW I think we just won’t be able to do those kinds of
algorithms.

BC You have this four-year itch to write a new program-
ming language, so you’re coming due. Are the constraints
on the problem any different? What’s the new language
going to look like?
AW It will probably be 95 percent the same. It’s the same
semantics: noun, verb, adverb—same data types, same
functions. But I like to try different things under the cov-
ers. For example, I like to try different memory allocation
schemes. It’s all call by value but reference count, which
is kind of amazing when you think about it, so there’s no
garbage collect. Everything is reference counted; when it’s
free, you know immediately so you get good reuse. Under
the covers, I play with different things. For example, if
you’re doing a vector operation and the reference count is
one, well, then reuse the vector. I also always try to make
the code smaller.
BC Are you actually redoing the implementation, or are
there going to be semantic differences as well?
AW The implementation is 100 percent new. I write
everything from scratch, so the C code is entirely differ-
ent but the semantics are about 95 percent the same.
BC You start over in terms of your C code? You take all
that and throw it out?
AW Yes, completely.
BC What does it feel like to part with all that code that’s
so lovingly created?
AW I love starting from scratch—and it’s stupid because
doing the parser, tokenizer, and printer takes me months.
BC Do you find that you can come up with a better
solution?
AW I think they’re getting a little bit better, but I think
I’m converging.
BC Is that advice you would give to practitioners: to
throw out more?
AW Yes, but in business it’s hard to do that.
BC Especially when it’s working!
AW But I love throwing it all out. Q

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

© 2009 ACM 1542-7730 /09/0200 $5.00

